skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Spernyak, Joseph A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A coordination cage containing six high-spin Fe(iii) centers is an effectiveT1relaxation agent through second-sphere water interactions. The cage is robust towards dissociation and binds avidly to serum albumin through electrostatic interactions. 
    more » « less
  2. Liposomes containing high-spin Fe(iii ) coordination complexes were prepared towards the production of T 1 MRI probes with improved relaxivity. The amphiphilic Fe( iii) complexes were anchored into the liposome with two alkyl chains to give a coordination sphere containing mixed amide and hydroxypropyl pendant groups. The encapsulated complex contains a macrocyclic ligand with three phosphonate pendants, [Fe(NOTP)] 3−, which was chosen for its good aqueous solubility. Four types of MRI probes were prepared including those with intraliposomal Fe(iii) complex (LipoA) alone, amphiphilic Fe(iii) complex (LipoB), both intraliposomal and amphiphilic complex (LipoC) or micelles formed with amphiphilic complex. Water proton relaxivities r 1 and r 2 were measured and compared to a small molecule macrocyclic Fe(iii) complex containing similar donor groups. Micelles of the amphiphilic Fe( iii) complex had proton relaxivity values ( r 1 = 2.6 mM−1 s −1 ) that were four times higher than the small hydrophilic analog. Liposomes with amphiphilic Fe(iii) complex (LipoB) have a per iron relaxivity of 2.6 mM −1 s −1 at pH 7.2, 34 °C at 1.4 T whereas liposomes containing both amphiphilic and intraliposomal Fe(iii) complexes (lipoC) have r 1 of 0.58 mM −1 s −1 on a per iron basis consistent with quenching of the interior Fe(iii) complex relaxivity. Liposomes containing only encapsulated [Fe(NOTP)]3− have a lowered r 1 of 0.65 mM−1s −1 per iron complex. Studies show that the biodistribution and clearance of the different types liposomal nanoparticles differ greatly. LipoB is a blood pool agent with a long circulation time whereas lipoC is cleared more rapidly through both renal and hepatobiliary pathways. These clearance differences are consistent with lower stability of LipoC compared to LipoB. 
    more » « less
  3. Abstract Purpose: Paracrine activation of pro-fibrotic hedgehog (HH) signaling in pancreatic ductal adenocarcinoma (PDAC) results in stromal amplification that compromises tumor drug delivery, efficacy, and patient survival. Interdiction of HH-mediated tumor-stroma crosstalk with smoothened (SMO) inhibitors (SHHi) ‘primes’ PDAC patient-derived xenograft (PDX) tumors for increased drug delivery by transiently increasing vascular patency/permeability, and thereby macromolecule delivery. However, patient tumor isolates vary in their responsiveness, and responders show co-induction of epithelial-mesenchymal transition (EMT). We aimed to identify the signal derangements responsible for EMT induction and reverse them, and devise approaches to stratify SHHi-responsive tumors non-invasively based on clinically-quantifiable parameters. Experimental design: Animals underwent diffusion-weighted magnetic resonance (DW-MR) imaging for measurement of intra-tumor diffusivity. In parallel, tissue-level deposition of nanoparticle probes was quantified as a marker of vascular permeability/perfusion. Transcriptomic and bioinformatic analysis was employed to investigate SHHi-induced gene reprogramming and identify key ‘nodes’ responsible for EMT induction. Results: multiple patient tumor isolates responded to short-term SHH inhibitor exposure with increased vascular patency and permeability, with proportionate increases in tumor diffusivity. Non-responding PDXs did not. SHHi-treated tumors showed elevated FGF drive and distinctly higher nuclear localization of fibroblast growth factor receptor (FGFR1) in EMT-polarized tumor cells. Pan-FGFR inhibitor NVP-BGJ398 (Infigratinib) reversed the SHHi-induced EMT marker expression and nuclear FGFR1 accumulation without compromising the enhanced permeability effect. Conclusion: This dual-hit strategy of SMO and FGFR inhibition provides a clinically-translatable approach to compromise the profound impermeability of PDAC tumors. Furthermore, clinical deployment of DW-MR imaging could fulfill the essential clinical-translational requirement for patient stratification. 
    more » « less
  4. null (Ed.)
    The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a 1,4,7-triazacyclononane framework, two pendant alcohol groups, and either a non-coordinating ancillary group and a bound water molecule or a third coordinating pendant. The Fe(III) complexes that had an open coordination site associated strongly with Saccharomyces cerevisiae upon incubation, as shown by screening using Z-spectra analysis. The incubation of one Fe(III) complex with either Saccharomyces cerevisiae or Candida albicans yeast led to an interaction with the β-glucan-based cell wall, as shown by the ready retrieval of the complex by the bidentate chelator called maltol. Other conditions, such as a heat shock treatment of the complexes, produced Fe(III) complex uptake that could not be reversed by the addition of maltol. Appending a fluorescence dye to Fe(TOB) led to uptake through secretory pathways, as shown by confocal fluorescence microscopy and by the incomplete retrieval of the Fe(III) complex by the maltol treatment. Yeast cells that were labeled with these Fe(III) complexes displayed enhanced water proton T2 relaxation, both for S. cerevisiae and for yeast and hyphal forms of C. albicans. 
    more » « less
  5. Abstract Early studies suggested that FeIIIcomplexes cannot compete with GdIIIcomplexes as T1MRI contrast agents. Now it is shown that one member of a class of high‐spin macrocyclic FeIIIcomplexes produces more intense contrast in mice kidneys and liver at 30 minutes post‐injection than does a commercially used GdIIIagent and also produces similar T1relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIIImacrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable‐temperature17O NMR studies suggest that none of the complexes has a single, integral inner‐sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIIIcomplexes that correspond, in part, to their r1relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys. 
    more » « less